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On the Expansion of any Functions of Multinomials. By
Thomas Knight, Esq. Communicated by Humphry Davy,
Esq. LL.D. Sec. R. S.

Read June #th, 1810.

1. e expansion of multinomial functions has, of late, been
so ably and fully treated by M. ArBocast, in his learned
work ¢ Du Calcul des Derivations,” that it may appear, perhaps,
scarcely necessary to add any thing to what has been written,
on the subject, by that excellent geometer.

Nevertheless, as he is the only one that has hitherto culti-
vated this part of analysis with any great success; and as it is
agreeable, I believe, to most persons, to be preSented with
various solutions to mathematical problems, I hope it will not
be thought superflucus if I show how the same things may
be accomplished in a very different manner.

By the procedure here made use of, we shall also be ena-
bled to arrive at many new and remarkable theorems (both
for direct and inverse derivation ), which could not, I imagine,
be very easily found by M. ArRBocasT’s methods.

For a function of one simple multinomial, I give (amongst
others) the same rules of direct derivaiisn, as that author ; but
when there are many, and in the more difficult cases of double
and triple multinomials, &c. or funcions of any number of
these, I offer new and expeditious methods; which are de-
monstrated with the less trouble, from the analogy which
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50 Mr. KN1GHT on the Expansion

reigns throughout, in this manner of treating the subject;
and the regularity with which we proceed from the easy to
the more complex cases. By means of this analogy also, the
reader may without difficulty keep all the rules in his me-
mory. ‘

2. I shall begin with the expansion of any function of a simple
mullinomial.

First method.* If f (¢ -}~ z) represent any function of ¢ -}~ 2,
and the fluxions be taken, separately, with respect to ¢ and z,
the fluxional coefficient is the same in both cases: or

<f -(f-if—z-)> = (f Qg-i)>, whence it follows;, that

f(@)z =f @) z=f (¢4 z). This being pre-
mised, let
fc4 cx + gx‘-{-lc”xg-l—) =B+ I}x -t 12396“-}- 133£3+
- B 4, &c. ... (1)
let %, Ié, }%, &c. represent the fluxional coeflicients of B, ]éé, flf,

&c. with respect to ¢, and we shall have

If we multiply this by ¢ & J4-2 é’xo&—{-g 'c”x’aéw}- +7z"(:

2" 7% 4 and take the fluent, we shall get, by what was just
now shewn, another expansion of f (¢ 4 cx + ¢ -}—'gx" +);

#* See La Crriox, ¢ Traité élément. de Calc. Différent.’ p. 25, note ; where a simi-
lar proceeding is used for binomial functions. '
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and by comparing the coeflicients, of the different powers of
z, with those in equation (1), there will be found,

B=¢B
1

m_1

. "ol rJ
3cB4+2¢B4¢B
1

B__ 2
3 3
R
n.om, Te(n—1) , Mo(nem2) ow .
Been ¢ B4 (n—1) ¢ B4+ (n-2) ¢ B4 wit2c B ¢ B
2 1 2 N2  H=-1
n

But B =f (¢), B= f (¢), whence all the rest are known, I
represent by strokes over the f the fluxional coefficients of
f(¢); the number of strokes marking the order. ’

Though this is a complete solutien of the problem, it affords
by no means an easy way of calculating the coefficients; on
which account I shall not trouble the reader with examples.
It will be shewn presently, that the method of derivation in
M. Arsocast’s first section is easily obtained from this.

8. Second Method. 1 here, as in the former case, consider

the quantity ¢ - ¢z + ¢z -4 ¢z -}~ to be a binomial, and
take the fluxional coeflicient of the function with respect to ¢;

but multiply by the partial fluxion ¢- z, instead of ¢ & + 2 ¢ z &

+, &c.; we find, by this way of proceeding, an _é_l”" for the

sum of all those terms in f that are multiplied by the powers
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r I 1
of ¢. In like manner, ﬁ BZC' will be the sum of all those
i .
terms, in the same coeflicient, that contain ¢ and its powers;

Heomt
and, in genera] f " the sum of those that have for factors

the powers of c .
Hence is derived an easy method of finding any coefficient,

when we know those that precede it: for if these partial

values be united, there arises
B__ (B ¢ B ¢ ‘B e i
= fumd L2 L2 &C. voverenn (8), provided that

we neglect

¥
in nE , all those terms which contain ¢,

i

in n_]is all those which contain - ¢ or ¢,

! 1 "

in nf_ , all those which have - corcoreg,

and so on; whence it happens, that many of the B’s will be

neglected entirely, and the chief part of the operation will

: g 2 .
always be in the first term ﬁ 2% From equation (g), we

find the first part of the expansmn of f (¢4 ¢ - ¢z +)
to be

1 *
F(e)+/ (c) cx +f(c)c x’-!—J(C)c 2+ f(c) e a4 f(e)e
Yy £ +f<c>c’5 e on | RS
+j()2 ) +j(6){cc+ 0} { Cm
+i5 By +f(c>{—c
i)
+/(0) 5
+7 (¢ >234

+'0) 555

i
)

‘T

&
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But, that we may enter rather more into particulars, let it be
required from the terms already given, to find ¢ the coeffi-
cient of x°.

To make the operation plain, I have put a star over every
term we are to use, excepting the coefficient of «°, which is
wholly employed.

z i un i aiin

2.34
I‘ Il‘ mr c’ Iclz
Gccc -
nonn 3 B nr "
Slesfita iy 8 b e=fo) B S55 =i
and by adding these together, we get
I ""'6 il N " 4 .
— c c " cle . ¢z i 03 m nm i
f() +j( ) ctl;f((’)—z—c—l—f(é') 234_ f()234_56°
+cc T o
i I 6 ¢
+ _%7' C/ls + 2.2
3

"This process is sufficiently easy; but, in order to find any co-

. B ., .
efficient as ,, it is by no means necessary for us to know all

those that precede it ; it may be immediately obtained from n_]il

by a variety of ways: but we must first learn how to express

by the fluxional coefficients of |~ ; after which we shall
only have to substitute in equations (,. ) and (8).
Now it appears, from what has been shewn in this article, that

, B ) B B , 3 B
B n \, B n n—1 B n \__f n—1
[ —— — ) ——— S — . M““—"“' —— ——
n—1 ! n—2 I 1 P n—3 i "
c* c’ [ [ *
B B
N2 N 1

= = ; (where by strokes put under a quan-

040 s b (o)

wa
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tity, I represent the reverse of the operations denoted by the
strokes over it)* and, in general,

o ) o m—1
B B , B
n — N1 —_— R B __ [ n—1
Tm )T\ =1y | T &e. ()3 n—m , m—1 .
¢ ¢ . ¢ /M s (M—2)

It is evident that we might find many other relations between
the B’s and their fluxional coefficients ; but those I have given
seem the most useful.

4~ By means of these equations, we may find 5 from ,, B ,in
several ways.

f

First Method. If we substitute, in equation (2), for ,,E 2

B , B , B ,
T e X R B A . . B Nn—1 . B
— )5 for ,Z o — |5 for | T )5 e for 7,
[ c* c*
B
N1

el b which values are got from equation (4), we

find
B * 5
g wtfazy ) (1) A1
n n— nec ',T(n—::"l-)' + (n—'l) ¢ ‘,‘..(n_z) + sesveceean
[ . [ *
B ’ B

1 P I

+ooc = )4 "F ) (6).

This expression agrees with M. ArBocAsT’s first method, and
affords the following rule.
To find 3 JSrom ,,E,, take the fluxion of the latter, with respect

1 n I’-.lm . I’h.l(m+ l) m+ l
to c, ¢, ¢, &c. and change generally ¢ *inlo ¢ x ——.

* Any number of strokes under a quantity will represent the depression of the
fluxional coefficients of 4 (c¢) therein contained so many orders.




of any Functions of Multinomials. 55

This rule is, however, more simple in the enunciation than
the practice ; on which account I proceed to a

5. Second Method. We might obtain one from equations
(2) and (5), but, as it would be somewhat worse than the
last, I omit it; and substitute in equation (g), the values of

I

&ec. glven by (5). We find thus

n—-x ¢ b N1 i
f = Jor o &t (7)s
0.3 "

(1, @,
or, if we consider " s undertheform,” = g4=-pc4 g + (3. ¢ i

B i }é ! b(I) " (Z) " 3) wn
n— R C'J‘mlj ﬁ (,"+1.2f [’3 C’+ 1.2.6 3 c* +,&C ( )

Where any number of strokes under the g’s denotes that the
fluxional coefficients of f (¢) therein contained, must be de-
pressed so many orders.

?t-—2’ n...3a

I

=

(@
In this expression, we must neglect in g all terms contain-

"

ing , m(B all those containing ¢ or ¢, and so on. Let it be
required, for an example, to {ind the coefficient of x7, from that
of z° given in article g. We shall have, after neglecting such
terms as are above sp\.ciﬁed
un " me(6)
.--f(()) C+f( )CC B ""‘j(())—-, B""‘j( )234.56,

and by performing the operations indicated by equation (8),
we find |

Jhe=f O e O o }”'(c>12343'+f () oz F () 52

2.3
0o 1 "
3 2
cce +Cjé'g’ L
. '”z 2 2.3 2
4 I
+c— '’
2 C —
o

* See Note III. at the end.
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(I) ” oo cz " (2) i A /it

ﬁo....j(c)cc f( ~ ¢ 2 /Bc-zf(c)cc;

(6) " “7 Il
234564 B ¢ ———j (¢) c ; these being added give ; 5 the

mn

coeflicient of z', which was required.

To find ® from equation (7) requires the use of both
fluxions cmd fluents; in (8) we are without the fluxional
process; but, in its place, have the trouble of observing the
numeral coefficients of each term: there is, however, a way
of avoiding the mention of fluents, and the necessity of paying
attention to these coefficients. If we consider equation (g)
and the mode of expansion derived from it, it will be evident,

n 14

that whenever we have any power (as the mth) of corcorc,
or &c. it must be divided by the product 2.8.4....m. This fol-

lows from the manner of finding the fluent of such a quantity
Ty m
as ¢ ¢+, and the consideration that we cannot arrive at ¢ with=

out having passed through all the lower powers, and repeated
the fluential process at each. Hence results the following

(2) (3)
rule; (where by 8, B, &c. I mean these quantities after we

have neglected in each of them the terms that have been al-
ready specified ).

1 (l) H (2)

Omitting all the denominators, multiply B wer by c; B by c; 8

m (3) m
byc; B by ¢; and so on : add these products together, and wherever

there is any power of ¢, ¢, €3c. as the mih, put the product 2.84....m
for a denominulor.
6. Third Method, If we substitute in equation (g) the
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valuesof B , B , &c. given by (4/), and it will become

Nom2 H=—73

/(n-—-!) c +/ N1 +/ N 1 +f n;—l

c'+, &c. ...... (9),
where we must neglect, in the second term, every thing that

contains ¢; in the thlrd term every thing that contains corc :
and so on.

If we did not do this, we should have the same combina-
tions of letters, frequently, more than once. We may, how-
ever, instead of proceeding according to the above given
direction, omit the superfluous terms ai /ast; and then the
rule will be as follows :

To find f, take the fluzion of B with respect to c, ¢, ¢, &c. and

T Me(meen)
after changing, every where, ¢ - into ¢ , take the fluent with

respect to this lasi ; observing to keep only once ihe same combina-
tion of letters.

But now let us consider, whether we cannot, by omitting to
make certain of the letters vary, prevent the same combina-
tions from being repeated.

o * "...(r-m))n (".nr q "o (Pmmn)
First, if, in the term P ( x| ¢ |,we make ¢

vary, accordmg to the rule JLHt now given, there results the

w(r—m)\n—1 " (r—m4-1) ".r\gq
combination P x( ) x ¢ X ( ¢ ) .. (a); but

the same fluxional cocfficient of f (¢) that is multiplied by
" -.(r—-m))n-x

( wfr=m)\n [".7\q ["
Px\ ¢ ) x( c ) will be also multiplied by Px\ ¢
MDCCCXI, I
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o(r—m41)  (r=—1) "...r)q—: Moo (Fr=1)
x C x C x’( ¢ , (where ¢ is either the
last factor, with respect to the number of strokes, or the last
but one, accordingly as q is equal to or greater than one) ; if

"o(r—1)

we make this term vary, with respect to ¢ , we shall
have the combination marked () over again.
Let us next consider when it will be necessary to make ¢

‘ ... "m\p
vary. In the term f (¢) x P x ( ¢ ) weee (B), If we make ¢

. . . "or(nt1) . ”...m)[)
vary, there arises the combination f(¢) xc¢ x P x ( ¢

but the same coefficient (as B) that contains (B), will also
r

.
9

fo(nt1) Mi(m—1) y ("...m)p_l

contain f(¢) xcxPx ¢ ¢ which when we

. L T(m—1) . Mi(nf-1) .
make it vary with respect to ¢ gives also f (¢) x ¢ x

(“‘..m)p ”...(m—x) )
Px\ ¢ Now ¢ = was here the last quantity or the

last but one. We may then affirm, in general, that, if we
make every term in B vary with respect to the last quantity,

N1 :
and the last but one also, when this immediately precedes the
last, not in place only, but in the number of its strokes, we
shall get all the terms we ought to have, any further varia-
tion only giving the same over again. From equation (.9) we
have then the following

Rule.
To find B take the fluxion of B with respect to the last of the
n Home L

quantities c, c', ¢, &c. in each term, and the last but one also, if it
immediately precede the last in the number of strokes.
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4..m M(m1)

Change every where ¢ * into ¢ - and take the fluent with
respect to this last.

This is exactly the same rule as that given by M. ARBoGAST
in p. 25 of his work.

#. The method pursued in this paper, has a remarkable
advantage over M. ArBoGasT’s in what he calls inverse deriva-
tion ;* which I shall shew hereafter to be extremely useful in
the expansion of double and triple, &c. multinomials. In the
present case, of a simple 6ne, we have, as. was shewn at the
end of Art. g, |

B B B B
n n fad k d
B =1 — : =1 — i3 F——1 D RN B=\{ = m 1
91 ] n—z o\ U n—=3 ¢ n—m P
e/ e/ ¢/ ¢/

whence this
Rule.

To find B , the coefficient of z"~™, from B that of x", take the

Hem n
“.om

Jluxional coefficient of the latter, with respect to ¢ , and at the

~same time depress, o the next lower order, all the fluzxional coeffi-
| i

cents of f (c) that are in | —

om
c

Thus from the coeflicient of z°, which was found in Art. g,

we get
fg 4 ’ i i 1o i C”' " ) i é; u i y ,;S
B==| — J=f(c)c+f(cc +S()zc +Sf()ge+S(mm
3 c* o )

X 1
%

+cc +c"c£‘

# See Note III. at the end.
Ie
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]2 1 iy 1o n éz " m
B={ & )=/ +T OO
[ I "
R C"
+T
&c. &c.

8. To complete the theory of the expansion of any function
of a simple multinomial, there remains, for us to sclve, the
following |

Problem.

It is required to find B without knowing. any of the coefficients
n

that precede or follow it.
It is, in the first place, evident enough, from what has been
done, that
n.n —1) "(m—1)

'fﬂac+ﬂw¢+ﬂd¢+ w1

LT et 0 8

i
el
where ¢ cons1sts (without considering the denominators) of

2.3 4oeeett’

/ nowm

all the combinations that can be formed of ¢, ¢, ¢, &c. in which
the sum of the strokes shall be #,* and the sum of the expo-
nents m. But to form these combinations, for the higher
powers, would not be very easy. It may not be amiss to in-

quire, therefore, for some regular method of immediately
Yoro (m—1) mem

deriving ¢ from « ; so that we may get all the {’s
, "

successively, beginning with ;——;:1—-7-1 which multiplies f (¢).

I [N
* I mean when the powers are expanded, as when ¢® is written ¢ ¢ ¢.
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I shall take no notice of any numbers, which divide the dif-

ferent terms, till the end of the operation; having shewn, in

Article g, that it will be sufficient then to place the product
2.8.4....pp under every pth power.

There can be no difficulty in perceiving, that all the corn-

foi(mar) "o
binations inxp may be derived from those terms in« .

that are multiplied by the powers of a:‘, in the following man-

ner. First, diminish the exponent of ¢ by one. Then, dimi-
nish the exponent of one of the other quantities by one, and
multiply by the quantity that has the next greater number of

".r\a n.s\b
strokes. For, if ( ¢ ) x P x ( ¢ ) be one of the combinations

" ’ " hd
we(m—1) . o e L
in , there must necessarily be in \ the combination

s "...r)a (s—1) (” )b-—-l '

<% ( c | xPxc¢ x\c¢ ; and from this the former

one is derived, in the manner above-mentioned, by taking
cor(§=1) "s

away the ¢ and changlng c into ¢ .

We will next see if there be any quantities that it would be

‘b (Il ’1)—9)‘ ("‘P)s
superfluous to make vary. Letcx P x ¢ | be

".m ,
a term of ¢ , we find from it, by the prescribed operation,
H(m—1)
the two terms of
b=1 Lop—g\r "ep\s—1 "L(p+1) D=1 " (p—gl\r—1
¢ xPx( ¢ ) x(c ) % C andc xPx( )

"lp=—q+1) [".p\s Twm
X ¢ x( ¢ ) . («)3 but ¢ will also have the combina-

b (P-9) r—1 "o(p—g+1) e(p=1) ["op)s—1
txoncxPx( ) X ¢ X C x(c) , from

which the combination («) may be got by diminishing by
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(p=1) e
one the exponent of ¢ and changmg ¢ intoc © Now

fen(p=1) | : :
¢ is either the last quantity or the last but one in the order of

the strokes. ,
We can then have no difficulty.in perceiving the truth of

the following
Rule*

", m-—l) 4,.m

~1st. To find :4/ take no notice of any terms in L but those
that are multiplied by the powers of ¢, in all these diminish the

‘exponent of ¢ by one ; and omit the denominators.

odly. Diminish the exponent of the last quantity, in these terms,
by one; and multiply by the quantity that has the next greater
number of strokes.

gdly. If the last quantity but one be that which immediately pre-
cedes the last in the number of strokes, make it vary in the same

manner as was directed for the last.
gthly. Al the combinations being thus formed, put the product

2.8.4y. oo under every wth power.
The reader may compare this rule with that given by M.

ARBOGAST, p- 6.

Suppose it were required to find B; we must begin with
10

110 ", ,8
"

N ; from which is derived by the rule, \[/ = e X 0,

c
LA
",..8 7 ,6 n2

mn c d h .
¢=-———xc+23 — % —, and so on, whence

110 ,IO 8 .8 7 ,,
f( 234_ +f()234. 8('+f {234. 7 +234 }
+ &e.

* See Note I, at the end.
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<.

The succeeding terms are found with equal ease, I omit to find
them only on account of the length of the calculation.

9. I shall now show that the same method may be success-
fully employed in more complicated cases; and, instead of
dwelling on particular problems, shall proceed at once to ke
expansion of any function of any functions of simple mullino-
mials,

¢p{F(c+c'x+g.x'+),f(e+éx+é'x‘+),&c.} ....... (a).

If we consider ¢ - cx 4, e 4 er -, &c. as binomials ¢ 4 y,
e 4+ =, &c. the function («), which may be, for the moment,
represented by ¢, will have for its fluxion, (y, %, &c. being
made to vary)

(%)y+(%)z+&c.~( )y-—l—( )z+&c,and conse-

quenﬂyf{ (£)54 (&) # + &e. f=e=0{Flcdcatirt),
flederdeea 4), &} (p).

If then we represent the expansion of the function () by the
series

B+Bx+Bx'+Bx+ ...... + Bar4 ... (q/)

and denote the ﬁuxmnal coefficients, of the first order of

¢ ¢ c
B, B, B, &c. with respect to ¢ thus B, B, B, &c.;
I 2 I 2
4 (4 €
with respect to ¢ thus B, B, B, &c.;
. I 2
&ec. &c.

the equation marked () will become

@{F(c+éx+),f(e+e’x+),&q.}=f{é+%x+]§$.+}
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1 " 4 ¢ e ! n
(cx- 20xo&+)+f{B+Bx+Bx'+}(ea&-]—ge z x4 )4 &c.
I 2
whence, after taking the fluents, and comparing the coeffi-
cients of the powers of x, with those of the same powers in
(y), we find
, € , e
B=c¢B4¢B-4 &c.

1
" ¢

c Ic n Ie
2¢B+¢B 2¢eB 4+ eB.
1

B= Py -+ — ‘+&C.

2

Illc Hc lc I"e ll‘ N e
3¢cB42cB+4c¢B 3eB+zzB+eB

B=— — 4 —2 - &ec.
3 3 3
“.ne Mn—1) ¢ n € , €
ncB+(n.-1)c B +...... 4+2¢c B 4¢ B
1 N2 n—1
B= v
n n
N.ne M(n—1) e € , e
n¢B+(n-1)e B +erens +2¢ B+e¢B
1 Hem2  H—1
+ . -+ &c. .es (9).

But B= <p{ F(c),f(e), &c. }whehce- all the coefficients are
“known.

10. This solution, however, gives no very expeditious way
of actually expanding the function in question; particularly
when we get to the higher powers: but by proceeding as in
the second method, made use of for a function of one single
multinomial, we find

B= Bed [Bia [Bédt ﬁé-+f1§£~+f]§3-+
N1 N2 n—3 n—1 N2 71—3
...... 4+ &ec. ...... (&)

c . ' c
where we must neglect in B all terms which contain ¢; in B
Ne=2 n=—-3
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' w e
all those which contain corc; and so on. In B must be neg-
N I

e
lected all terms which contain any of the ¢’s; in B these, and
N2

those also containing ¢'; and, in general, all those terms must be
neglected, as we proceed, which contain any quantities whose fluzx~
ions have entered into the preceding terms.

From the above equation is derived an easy mode of expan-
sion, I shall give an example in the case of two functions ; and

shall represent, for brevity, ¢ {F (¢), f (e)} by ¢, and its
fluxional coefficient of the m 4~ nth order (when the fluxion

has been taken m times with respect to ¢ and » times with
m,n

respect to e) by ¢ .
We find here, B==¢; B=1¢c+ ¢ ¢;

I

1,0, 2,0/, 0,1, 0,2/ 11,

B_¢c+<p_+q> +<p-—+¢cé but to explain more
fully the manner of proceedmg, let it be required to find B

3
from the preceding coefficients. We have, after neglecting
the specified terms,

20,4 3,0 , LY,y L2, , 20, , v LI g4,

2
ch-=cpcc+<p£+<pce+cpcff+<p_0_’;e; Be=o¢ce
2 2.3 z 7
< 1,0, e ZE 0—*3 3 w Ol
Be=oge; Be._.q:ee fBe..._qae the sum of

these gives

1,0 4 2,0 ; p 350 ' 0,1 4 02, l 1,1 [ 0o

B~¢c+@cw+@ +we+@eb+¢ S+ olcetce

L2, [, 21 ',,
+oc-+o=e

MDCCCXI, ‘ K
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11. To get methods of deriving any coefficient from the
one immediately preceding it, we must substitute, in (3) and

(&), the values of B and B given by the following equations,

Ne—m N
which are similar to those found before, in the case of one

multinomial, and marked (4) and (5)-

¢ B B
”—! ’ n A
B == B ={ 2 = PTE 1},
” — 1 ? "... LN —— y
n(m n=1) ) -m (m—1)

[0 (7])
m-=1 , m=—1
c Bx . nBl
n— . _ - )
B = —1 ; B= - ; &c. .. (0)
ne—m ¢ €con(m—2) "M pa ce..(m—2)

where, by any number of ¢’s or ¢’s placed under a quantity,
I represent the depression of the fluxional coeflicients of ¢,
contained in that quantity, so many orders, with respect to ¢
or e.

By combining equations ('4) and (4d), we find

B n—l " (n ‘) 71—1:;-!
n n c — (” (n-—1) ¢ e + e
PO

" e N l n-—ﬁ I (1)
+2c _.::.. +c - +ne ] 4 (n—1)e
; A
B B B

n—1 . " n—1 " et : . .
=2 +ond2el — +e| = ) 4~ &c. which in
€ * ’

e

words is this: To find B, take the fluxion of B with respect o
a2 Nen 1
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. n.m
[ ] .
¢ €, ¢, Gc. e, e, e, Ge. &c. and change, every where, ¢ *into
"".(m+ ) . . ll m lI (m+ )
¢ m-;}-l m+x @C

The reader may try this rule on the examples in the last
article: I proceed to simpler methods for practice.
By combining equations () and (e), and considering B

N
I t (2) f ‘

under the forms B ~—B+/30+/3c‘+ﬂ '+, and B = A -

Moo

(I) ! (2) ¢ (3 I (I)II
Ae- A+ A4, and &c. we ﬁndB fB cf ped
(2) 1 (3)"" (‘) " (2) m
Bct2.3 /3c'+ + Be+ Ae-f2 Ae'+2.3
4 b T §
(3) m

Ae* o .. 4 &c. where in /3 aIl terms must be neglected
ee
which contain ¢; and in general, according the rule given in
article 10, all terms must be neglected that contain any quan-
tities whose fluxions have entered into the preceding terms.
By this method the expansion might be accomplished with-
out difficulty, each term is found at once, and no reductions
are necessary: the one which I am“going to give is, however,
much better, being, I conceive, the simplest possible.
12. By combining the equations (4) and (), there results
B B B

n—1 ! N1 " n—1 é” )
.

B= [ (= )+ [
I n
n c ¢

LTYY Y T T

/B ' B "
. N1 ! n—1 " R 1 n
+ S e’ + S— [ + e.+.n+,&c~

€ L H"
.
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where we must observe to neglect certain terms, according to
the directions so often given: and if we apply here all that
was said in article 6, when we were considering a similar ex-
pression for a function of one multinomial, we easily get the
following
Rule.
To fird B from B , in the expansion of a function of any func=
n Howm T

. . ' "o !
tions of the mulitnomials, c 4 c x 4 c ' and e 4 ¢ x 4 é'xf

4 and d 4 d z + d 24 and .
1st. Consider only the ¢’s, and take the fluxion of B , with re=
Ko [

spect to the last of them in each term ; and the last but one also, if

it immediately precede the last in the number of its strokes : change,
Tam Mo(m41)

every where, ¢ * 1o ¢ ., and take the fluent of each term

with respect to this last,

odly. Neglect all terms in B which contain c, ¢, ¢, &c. and

N1
proceed, with the remaining ones, in the same manner with respect
to the e’s.

gdly. Neglect all terms in B which contain c', é', é", &e. e',é' Z',

A1
&c. and proceed, with the remaining ones, in the same manner with
respect to the.d’s.—And so on.
Let it be required, in the case of two multinomials, to find

B from B which is given in article 10. The first part of the
4 3
rule gives

:ouu 2,0 g, m z I LYy p 2,1 z n LIy,

¢c+¢>(66+-—)+¢— +¢234+¢ce+¢—~e+ gce
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8,2, ) & 22’, s 2,8V oy 31 '3 v By, L2, L3,/ P

o=+ o=+ occe + ¢ 5e+ ¢ce+¢cee+¢c—-
The second part gives

IIII o 0’3 2 n 0’4 e"
¢e+<p(ee+ )+¢>— + ¢ oo
The sum of these is B. As the number of multinomials adds
4

nothing to the difficulty of expansion, according to this me-
thod, it is useless to give more examples.

13. Nor does the number of multinomials make any diffe-
rence as to the facility of inverse derivation; which depends on
the equation

.
B
B n
"
- o
¢ c

Thus from B, just now given, in the case of two multinomials,

4
let it be reqaired to find B ; we have

1,0, 2,0 'z 01 0,2 ’l 1o
B“K,, =0l ostoitontoce
14. There remains the important

. \ Problem.
To find B without knowing any of the other coefficients.
r-

It will be plain to any one, who in the least considers the
methods that have been employed, that B must contain all the:
r

tonoom oo 1 noom

possible combinations of ¢, ¢, ¢, &c. e, e, ¢, &c. d, d, d, &c. &c.
that can be formed with this condition, that the number of
strokes be . Every mth power will be divided by the product
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o, B v, &c.

2.3.4....m: and the fluxional coefficient* ¢ , that multi-
plies any term, will have for the left hand figure over it that
number which is the sum of the exponents of the ¢’s; for the
next figure on the same side that number which is the sum of
the exponents of the ¢’s; for the third that which is the sum
of the exponents of the d’s ; and so on.

The only difficulty then is to find these combinations (with-
out the possibility of missing any, or the trouble of finding
the same more than once) by some regular process of deri-
vation.

A rule was given in Art. 8, when we were considering the
similar problem in the case of one multinomial, for deriving
all the combinations in B, in which the sum of the strokes is

r
r, from ¢" as origin of derivation.
The same rule will apply here, but instead of the one origin

I - . . . -
¢’, we have, in the case of two multinomials, the origins

re—z ! lp—1 [y

! ! Iz 1
e, et T €T ce T e
1, !
Let us consider any particular origin as ¢* ¢”. 1 denote the

term derived immediately from c (by the rule in Art. 8,) by

Ac": and the terms derived from this last, from the same

rule by A? ¢*; those got from A’ ¢" by A% ¢*; and so on.
It is evident that all the possible combinations (of the kind

as Bs v, &c.
» ® represents the fluxional coefficient of ¢ { F (c),f (e), V (d) &c.}

of the order a4B-+y+» &c. where the fluxion has been taken « times with respect to
¢, B times with respect to ¢, and y times with respect to d 5 and so on.
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we are seeking) derived from the origin ¢ e™, will be ex-
pressed by the product

’ 1 P ) I [} 1
(" A e AP e 23 ) (M AT A% M AS ™),
where each derivation of ¢” is multiplied by every one of ¢*,

and conversely each one of ¢" by every one of ™.
We have nothing to do then but to deduce the derivations

from ¢” and ¢™ by the rule in Art. 8.
Suppose that B was the coefficient required, and that we
5

wanted all the combinations arising from ¢3 ¢*. We have here

1" i

Ad=cc:; A°B=c; A3c3—-o Ad*=e; A*¢* =o,
and, by substituting these values in the above product, we find

all the combinations arising from the origin 3 € to be ¢3 ¢* 4=
BSedcce’ Fcetduccedce :

It would be as well to write down the appropriate denomi-
nators to each combination as we proceed: and when we had
treated all the origins of derivation in this manner, there would
only remain to arrange the terms under their proper fluxional
coefficients.*

mo, o.m,
» Instead of ¢ e, 1 might have taken for origin of derivation ¢ ¢ x ¢ ¢™; and
after multiplying the factors

7,0, n—1,0 n—2,0 osm, 0Me=l ,  0yM==2 ,
(ec™+ @ .24 ¢ .a%dty) (¢ ey o A+ o .a%e™y)

v,0 054 . Vi
have changed ¢ x ¢ into ¢ ; but this would only give additional trouble without:

answering any useful end: it is sufficiently plain that the appropriate fluxional cocffis

- /, ! - n
cient of A" x AP ™ willbe o .
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If the function under consideration contain three multino-
mials, the origins of derivation will be

o7 I,

r r—1 r—z 2 2 lr—2 Fem= 1 r
¢ ¢ e, T e, v C € ,c¢e , €
Cli % (ér—I,C’r—z e’ C’r_.3 e’z, CI e’r-z ; e’r—-r)
g b L g ceson reote
I~ ! 1, P
A x (TF e, T €T

f I
A (¢ ,ce ¢
,r-—l 1
a7 x(c ,e)
c’lr
and all the possible combinations derived from each particular
e wom ip - A Ty
origin as,c" e” d®, will be expressed by the product
[ / ! ' 0 Iy
("= A" A A, &) (€7 e pe™ e A7 ) e
A I 1 ‘
(& 4= pd? 4- 57 dP -, &e.)
The reader will easily extend the method, if necessary, to a
greater number of multinomials.

As we have, in this manner, a certain, easy, and regular way
of finding all the combinations in any coefficient B, the pro-
r

blem is completely solved.

I go on to multinomials of bigher kinds: and, with M.
ArBocasT, shall call those multinomials of the #th order which
are disposed according to the powers and products of z differ-
ent letters z, y, %, &c.

15. After having so fully entered into particulars, in the
preceding cases, there can be no difficulty in perceiving, that
a complete theory of derivation, for the expansion of any function
of any number of functions of multinomials,whether they be simple,
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or double, or triple, &c. is contained in the following equa-
lions,

¢ é €
B =z./. B X Wyv,p, &C . B
m,n, 7, &, Moy Rty ¥ empy &€, M=ty N1, 1 p, &0,
é
X s V3 py &C. =y &C. v (%)
B
— m,n,r,&c.
B b é —— &Cv XTI ITYY Y (7\)’

M g T vy Ty &c. oo 73 o &c‘. s

where B is the coefficient of zm y» 2, &c. in the expan-
my n, 15 &C, )

sion; 5, &c.and 5 &c. &c. are the coefficients of z* " 2f

&c. before expansion, under the signs of the functions.

The sign =, in the first formula, expresses the sum of all
the terms that can be formed by taking for w, v, p, &c. all the
whole numbers from o to m, #, r, &c. u, v, p, &c. must not how-
ever all equal nothing at the same time, .

It is scarcely necessary to cbserve, that certain terms are
understood to be neglected in equation (%), according to the
rule given in article 10, which is, that all terms in the B’s must
be neglected, as we proceed, which contain quantities whose
fluxions enter into the preceding terms. |

The above expressions if considered not only in themselves,
but with respect to the formulas that are immediately dedu-~
cible from their developement and combination, in the manner
that will presently be shewn, appear to be the most general
and important in this branch of analysis.

16. Let it be required to expand the double multinomial

function

MDCCEXI. 1.
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c—}-cx-}-c‘x’ dc2® 4
350
»Lcy—}-cxy+cx'y+
0,1 1,1

@< ’ Linto the form
+er +cxy+
+or +
\ 0,3 J

: LI
Equation (x)is in this case reduced to B=1x. B

m,n

expanded is

() coreenee B = B

¢
I,O _I:j) B 2,0
1m0 Mem1,m I

B-{-Bx-}-Bx’ -{«Bx e

1,0

+ By +Bxy+Bx”y+

0,1 2,1
+By +Bay +

0,2 1,2
+ By +

0,3

¢
% w,v Which
My Homm y

oooooooooooo

/ . l .
+f B LB s
e/ m, Men Lyp—1

! .
+ f B e e
My —2

o 1

ot

By this formula, we find the first terms of the expansion to be .

¢«0+é@)“x+é@)
JORREXIO

+ 0 (¢)

+o(c) /S CoXor

e
Let it be required to find B.
2,1
terms specified,

c 2
2o [+
c\? »
(120)

o,

2

4

L Xy 4

We have, after neglecting the
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5=0(0) 5 ,,,+¢(C) o f B o =0 (0) on%s08
l:l

. fB S = ® (¢) ,.ys and these added together give

i o 1 ¢ ®
z],?’l;—:¢ (¢) zfl + ¢ (C){ 1?0" xfx + oil X zio}+ ¢ (c) (l-i?) xofx'
I wrote the terms separately, and then collected them, for the
better explanation of the method ; but this double labour is
by no means necessary : the coefficients may be formed and
written down at once, as quickly as can be wished.

17. A very little consideration will convince us, that the

terms 4 B s B o.: e/ B . may be en-
Myt ¥ MR 2 &7 myn—r
tirely left out of formula (w), excepting when the term we

search is of the form B, in which case it is reduced to the co-
om

efficient of y™ in the expansion of ¢ (¢ 4 o,y 4 o, 7"+).
If then we neglect these terms, and, in the remaining ones,

B
14
° e Ly - °
putfor B its value { === ] given hy (»), equation ()
Moo= 1oy P v P
will become
B 8
e H m=1n § ¢ m—in Y g

(v)nnu B S & a !_:Q+ “"’T“‘ 3,0+ 9000000000000

m,n 1,0

4 B ,
+ /’n:—:l:-’z ‘C:I+ 200D 89000000

C
\ &

PSPPI P08 P00 2008008 00

kununuv+

A,

Mewer ¥ 10

P Ly

¢
Py o8
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by means of which equation we may find B from B . Here,

m n m—1I,n
as usual, we must omit, in the successive fluxional coefficients,
all terms containing quantities whose fluxions have been fac-
tors in the preceding terms of the formula. Let us, for an

example, find B from B given in the last article ; we have
351 2,1
B
2,1

2 )i g 2,+¢<c>{( RINERES

v : B
: 7 c c 2,51
c
X 2:°}+ (c) 1,0 0,1’ --@hl X 210’ ¢
190 2,0

¢ ! 2,1 : :

C e . > [ c . —

30— @ () o o1 % 3,0, il qb (¢) T whence3BI =
2,1 . >

5 () & F 8 (O] &x o Gx ot Gk ol 6 (0)
{(1-2—0)’ 11+1,o zo}+$(6)( 3) of!'

18. We may also derive from equation (v) the following
simple

,

Rule.
To find B , take the ﬁua:z'on of B with respect to all the quan-
myn ‘ me-—1 ,n

bities ; change, every 'where, oy into " _H ,» and take the fluent with

respect to this last. The same terms must be kept only once. ¢

5 oo
By this rule we frequently find the same terms more than
once, which disadvantage is, however, more than compensated

by its shortness, and the ease and simplicity of the process.
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Let it be required from B to find successively B, B, &c.
0.3 L3 2,3

We saw, when treating of a simple multinomial, that’
c

=0 () o g +0 (€) o1 % 0zt o(c ) (0’ ) whence, by the rule,
o,3 2.3

B=¢(C) lc,3+ ¢(0){1‘:OXO€3+ lc,l X 0";2+ Ofl *x 1‘52}+<p(c)

1,3

c\? cy?
[axaxarladealts@nx i B=sws,
+<g(c){zoxo, +1,oxxf3+' 2,1 o,z+1, 1,z+ofxxzfz}

c

n \ ,
L A A N A R A
X o2 T on (.‘.c’.‘.)“-}-(c‘)’ } "”(6)5( ) o, o,2+1,o
2 2

0,2

+ 5 % (o )}.{;Z';"(c)( } (cl) It is not ne-

2.3

cessary to calculate ali the coefficients we may want by drreci
derivation ; when we have got a few, in this manner, we may
find the rest by the inverse method which is much easier. M.
ARBoGAST has put the twenty-eight first terms in a table ;* of
these there was need to calculate only four directly, as I shall
show hereafter. But, to give an example of this inverse pro-

ceeding, let it be required to find B from B just now given.
. 2,2 2,3

(o50)
c

0,1

X T

: B
FEquation (A) becomes in the present case B = =)

M=y Wrmsy ¢
sy [

s S
. —f 23 \ __ ¢ v c ¢
whence B= B =[ =2 |=¢ (¢) 2,2+@\(’>{;,o-7‘ Lz
i

[
2,2 —— 1
3 2.=0, 3 01

* Calc. des Deriv. p. 127,



»8 Mr. KN1GHT on the Expansion

[

¢ ¢ ( )‘ ¢ c 1,y ¥ (p)s ¢ ¢ e

F oo % on 2 xS 0 () x g %

% lfl 4 zfo x (ofl)s}.'. (;"((;) (‘c’o)ox_ (ocl)h°
- | .

>
O .

2
19. Instead of leaving out of equation (x) the terms of this

form/ B  aswedid in article 17, we might have omitted
e my pear

those of the form B ¢ ; in which case it would have

r,o
M=y B
become
? . ’ .
— c ¢
B — B O)I B l’l eeesseden
My M, Hoem 1 M=y e )
5 b é
B o,z + LEARE L XY
My Rem2
. ! &
Qeoecioes +f B “,, +I'IQ
Moo o3 Namer ¥
, B
Here, if we put for B its value .’."_i.‘.;:l‘::l derived
| M=ty Rt [4+I,'-~I
from equation (1), there results
» B B
— mtln—1 ) ¢ My, N1 § & o
Bn_ —— Jou - e,
e 1,0 . 20
B
m41,n-—1
+ —""g'——' 0)3+ 92000000100
I8 y
B
. + M1, n—1

[
wt I v=1

os?
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where, in every successive fluxional coefficient, certain terms
are to be omitted, according to the usual rule.

Perhaps the simplest way of using this equation, although
we shall frequently get the same combinations more than once,
is by the following

Rule.
To find B take the fluxion of B with respect to all the
m,n M1, B
quantities, excepting ¢, ¢, ¢, &c.; change every where, M’,, nto
O, I 0,2

:»—-!fv 4 and take the fluent with respect to this last.  The same
terms must be kept only once.

B was found in article 17, from which we have, by this rule ;
31

[ " c \*
B0 () £ 6O dux St Sox ot o ot ()]

s

’ 2

mn

" c \* c\* c \e
+e (C){ ("l_;g) * 0(;‘2.’%1(312}—) x zfo"%' 12:‘0 X oc,x X 1(;‘15"5"@(0) (”;)

x (oc,l) .
2
Suppose that, beginning with B, we had calculated in this

6,0

manner B, B, B; from these may be found, with the greatest
51 42 353 '
ease, and without any more direct derivation, the twenty=eight first

terms. For from B, B we find B, B merely by changing, in
551 42 L5 2,4

the former, the numbers that are on the right hand of the
commas (under the ¢’s) to the left hand, and the reverse. All
the other terms are found, by inverse derivation, from the

equation B ={ 2~
T phy Homem?
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v ‘ Problem.
20. To find B immediately, without knowing any of the other

i mn
cogfficients.
The coefficient of ™ y" will easily appear, from what has
been shewn, to have the following form;

(r__,)n (—l a, 1‘ "oy
B ¢(6)n,,nw-<p(6)~b+ +<p(0)\¥/ +¢(0)4«+
C Ma(man) ( )m ( ¢ )n Mir . .
= ¢ (¢) x 110/ x \ot) where ¢ contains all the combina-

2.3.wm 2.3 ;

tions that can be formed of the ¢’s (after ¢ or o) in which
the sum of the bottomn ﬁgurés, on the left of the commas, is
m ; the sum of those on the right #: and the number of fac-
tors . Moreover every power as the mth will be divided by
2,872, | ‘

And the reader, who considers how the similar problem
was solved, in the case of a simple multinomial, will have no
difficulty in perceiving the reason of the following very simple

Rule.
! {Pe=t) LW 4

To ﬁnd + o from \!/ 15t take the fluzional coefficient, of the
latter, wilh respect o °; and, of this fluxional cogfficient, take
the Sluxion with respect to all the quantities; change gemerally

S, into %\, and take the fluent with respect to this last.

edly. Any tennszn':prq/ the fom('-O)px(Ofl)qx(o,s)tx(o,u) x &e.

2.3wp 2:3q 2:3F 2300
where, except in "o, all the figures are on the right of the commas,

will require, besides, the following process. Take the fluxional co-
efficient with respect to ., and, of this fluxional coefficient, take the



of any Funclions of Mullinomials. 81

. oy oy c A
ﬂuxzon.wztb respect to all the quantitiesbut | ; change gencrally ;,

nto .\, and take the fluent with respect to this last. The same

terms must be kepi cnly once. ;

M (m4n) c\m ¢ \n

By this rule, we find B beginning with ¢ (¢) x {_‘_0)__ % E_')__

] 2.3..m  2.3..70

for origin of derivation: the reader may compare it with that
given by M. ArBocasT at p. 113 of his work.

21. If the function to be expanded contains functions of many
double multinomials, all the formulas, and rules, that have
been given for one, may be extended to this case, by means
of equations (%) and (A); in the same manner as a like ex-
tension was made in treating of simple multinomials.

Thus, from the method of finding B given in article 19, we

m,n
get the following
Rule.
To find Bfrom B in the expansion of any function of any

m,n m-d-I, H—1
functions of the double multinomials

e Lozt et o dt a4 &
tod+ tayt +or+

+ + +
1st. Consider only the ¢’s, and take the fluxion of B  with

M1, N
respect to all of them except ©, o,y o, Sc.; and proceed exactly in
the same manner as was directed for one double multinomial in

article 19.
edly. Neglect all the terms tn B which contain any of the
m1,n-1
¢’s but ¢; and proceed, with the remaining terms, in the same
manzer with respect to the e’s.

MDCCCXI. M
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gdly. Neglect all termsin B which contain any of the ¢’s
M1, N1 :
or ¢’s except ¢ and e; and proceed, wiih the remaining terms, in
the same manner wriih resgect to the d’s.  And so on according to
the number of multinomials. ’

The sum of ihe terms, ihus obiained, will give B.
m,n

It is scarcely necessary to observe that, when we have got
a few of the higher terms, by this rule, the preceding ones
may be found from the equation

B
B o m,n
M e [y WV ¢
B J ¢

as in the case of one double multinomial.

To find any coefficient, without a knowledge of the rest,
when the function contains more than one double multinomial
we must combine the rule in the last article, with what was
shewn in article 14,.*

2g. Thus we have a complete and simple theory of the ex-
pansion of functions of double multinomials; and from equa-
tions (x) and (a) a precisely similar theory may be derived
for multinomials of higher kinds.

But it is wholly unnecessary to enter into further details;
we are able, without any more trouble, to see what must be
the solution of the following

General Problem.
It is required, in the expansion of any function of a multinomial
of any kind, to find B the coefficient of 2™ y" 2"’ ' &,
m, i, 1,8, t, &c.
from B that of 2™+ y"=1 2" u® o' &
’ M1, e, 7, 8, £, &Co .
* See Note IL.
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Rule.
Take the ﬁuxz’on of the latter with respect to all the quantities

€TCEPL y rn > or0p SC that have nothmg on the lf;ft hand of

the first comma; change generally " gc 180,y Vo o g aNd
lake the fluent with respect to this last. The same terms must be
kept only once.

The extension of this to any number of multinomials is ex-
actly the same as the similar extension, for double multino-
mials, in the last article.

Second General Problem.
2g. It is required, in the case of the last problem, to find
B without a knowledge of any other coefficient.

m, N, 7, S, £, &C.

This will be accomplished if we can ﬁnd \p 'whzch mulliplies
" (r-—l) II ?

¢ (¢) from L which multzplzes ¢ (c)

Rule.

II

- 1st. Take the fluxional coefficient of ¥ wzth respect 10, o o s
and of this fluxional coefficient take the fluxion with respect to all
the quantities ; change generally ;", &, L0,y o, ,‘ P, &c. and take
the fluent with respect to this last.

n

I
ea’ly If there be any terms in <\ in which the unit under
1,0,0,000, &c.» If it be one of the factors, is the only left hand figure,

they will require a further process.
Take the fluxional coefficient with respect to0 o0 o gc.» and of

this take the jluxzon with respect to all the qu(mtftzes, except
' Mo
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1,0,0,0,0, &¢. ? Chﬂnge ge’w7 aZZy 05 ths ¥ p5 &Co inito O, 41,45 p, &ec. and take

the fluent.
Mowr
gdly. Awy terms,in & , in which the unils under | , . ¢ o and

¢
0,1,0,0,0,&C.?

the first and second left hand places, will require a still further

if they are amongst ihe faciors, are the only figures in

c
0,0,1,0,0,&C.?»

and of this take the fluxion with respect to all the quantitics except

4
1,0,0,0,C,

process. Take the flurional coefjicient with respect to

c . ) ¢ ;
gc. MMA oy 000, 803 change generally o o < & nlo

0 0 1 +‘;’ 1y pdec, and take the fluent.

The rule will procecd in this manner, 1700 7% coniains 0 paris if
ihe mulitnomial be of the nin order. The terms arising from all
these parts must be added, and the same terms kept only cnce.

24. In treating multinomials of higher kinds, I have given
rules by which certain terms are frequently found more than
once: this was done for the sake of simplicity, and that the
precepts might be easily retained in the memory ; but was by
no means a matter of necessity ; for rules might without diffi-
culty have been formed (as from equations (v) and (%) for a
double multinomial ) by which no superfluous terms would have
been found. |

25. It will not be an improper termination of this paper, to
state what are the peculiar advantages of the method pursued
in it.
~ To many, I have no doubt, its brevify will be a recommend-
ation ; and that it requires no notation different from that in
common use. '

For though [ have represented some of the fluxional coefli-
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& 5 \¢
cients in an unusual manner, as { “=% J by { =% ) the doing
I !
\, €% c?

50 was not necessary ; but it appeared advisable to make a
distinction between the taking the fluxion with respect to ¢,

and the same operation with respect to ¢, ¢, &c. which enter
into the ceeflicients in a manner different from the first.

The uniformity of the procedure is such, that, when we
have arrived at the rules for one simple multinomial, a person
of any skill in this kind of inquiry might easily divine those
for the more difficult cases. But the most important circum-
stance is the perfection given to inverse derivation, and the
facility with which we may, by that means, find any large
number of terms in the expansion of the higher kinds of mul-
tinoinials, as has been shewn in article 18 and 1g9.

The last advantage I shall notice is, that the same rules of
derivation serve equally for the expansion of a function of one
or of a thousand multinomials : whereas, from M. ArRBoGAsT’s
methods, it would not, I imagine, be very easy to give a rule
in words for the expansion of a function of five or six.
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NOTES.

Note I. The rule in article 8 may be differently enunciated thus.
m(m—1) T.om '
Tofind take the fluxional cogfficient of L with respect to ¢; and of this
Suzional cogfficient take the fluxion with respect to the last quaniities; change gene-

a...m U(mr-1)
rally ¢ - into ¢ « and take the fluent with respect to this last.

2dly. If the last quantity but one be that which precedes the last in the number of
strokes make it vary in the same manner and take the fluent.

"This is simpler than the rule in article 8, and more conformable to th: mode of
expression made use of in other parts of the paper.

Note II. In looking back on what I have written, I am apprehensive it may be
thought that I have affected too great brevity in the last paragraph of ariicle 21.
That the reader may have no difficulty, the following problem is added, to illustrate

. what was said in the passage alluded to.

Problem.

To find at once B in the expansion of a_function of two functions of double multino-
msn

mials.

It is plain that B must contain all the possible combinations of ¢’s and ¢’s (see the
sn

notation of article 21) that can be formed with this condition; that the number of
left hand strokes be m; the number of right hand strokes #, Every rth power mast

a8
be divided by the product 2.3.4...r. And the fluxional coeflicient ¢ , that multiplies

each term, will have, for the left hand figure and over it, the sum of the exponents of
the ¢’s in that term ; for the right hand figure B the sum of the exponents of the ¢,

Now to get all the combinations of the kind mentioned above, with their proper
divisors, we must plainly take, for origins. of derivation, all the terms of the following
product, when actually multiplied.

v“lfO)m + (lfo)m_l X ot (ITO)mMZ ® (:O)z‘g“”""‘"?(xfo)m}

Lz 3o 2.3.. (m—»—l) 2.3 (M—2) p) 2.3..m

multipiiedby{( o,l)n—"1 xofz'*'(ofz)n—z x(ofl)2+"""l"(051)n}

o 2.5 (A1) 2.4 (H=-2) 2 2,300
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Suppose any one of these origins to be

S0 % (o) % (Ifo)t X (o) e (A)

2.3 1 2.3...8 2.3...% 2.3
Let A, A% A3, &c. represent the successive derivations made according to the rule
in article zo. It is plain that all the terms got from the origin of derivation (A} will
be expressed by the product
[l e+ o [l (] el () x (Sl e ]
2,507 % r 1

2 3.8 .2.,,3 s 2.3..7 2.-3...31

multiplied by

e\t t.,re\u \ e\t e | )

r(m) ( ) +Ai( ,o) x(o,i) }"' Az{(l of x(o, ) 1'*‘ &C“}‘
2.3 2.3 2.3..F  2.3..U 2.3..8  2.3..U j

Jn this manuner may the terms be derived from all the origins; after which we have

only to arrange them under their appropriate fluxional coefficients.

If we wanted to find immediately B in a function of two multinomials of a
m, n, s &C,

still higher kind, the method would be exactly similar.
Note III. In the preceding pages, I have considered the expansion of multinomial

functions generally ; and abstained from giving particular examples, that the paper
might not be extended to an unreasonable length. There are, however, some cases,
—when the function is a whole positive power—which require a separate notice. The
method of direct derivation given in article 5, and a similar one at the end of article
11 will here fail: this indeed is of no consequence, as the rules in article 6 and 1z
are both easier than the former, and applicable to every case. But it will be necessary
to give new methods of inverse derivation; for if we consider those in the paper, in
article 7 for example, it will easily appear, that though they are true generally for the
mth power, the case is very different when we give to this letter the particular values
1, 2, 3, &c. 'The reason of which is that the fluxional coeflicients of f (¢), after the
first, or the second, or the third, &c. vanish; and these functions may be said not im-
propeily, when compared with the general form, to give defective expansions; any
rules, therefore, which depend on the depression of the fluxional coeflicients of f (¢)
will be of no use here.
The following very extensive rule is the reverse of that, for direct derivation, in
article 12, It agrees, in its simplest case, with that of M, ArRBoGasT in his article 36.
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Rule.

3 ) ’ v . - '
To find B from B in a function of any functions of the multinemials ¢ - ¢ & 4
N1 i

i / i ! "
ca*t,etexteart,dpda+ da* 4, & ist. Consider only those terms,

- . . o, . ! v . ) ° .
in B, which contain some of the quantities ¢, ¢, ¢, &c. 3 reject all the terms in which
n

the last of these letters are raised to a higher than the first power: reject also (if
there be more than one multinomial ) such terms as contain none of the above men-

{
tioned quantities but the first power of c. Change, generally, in each remainiug

Mom a(m--1
term, the last of the ¢’s as ¢ into c - and take the fluent with respect to this

quantity.

T
2dly. Neglecting those terms, in B, into which ¢, ¢, ¢, &c. enter, consider those,
n

oo . . . .
of the remainder, which contain ¢, ¢, ¢, &c. rejecting all those terms in which the last

of the ¢’s are raised to a higher than the first power. Those terms must also be rejected
( if there be more than two multinomials ) which contain none of the ¢'s but the first

; ".om
power of e. Change generally, in the remaining terms, the last of the ¢’s as ¢ into

Mo (m—1) : .
e - and take the fluent, with respect to this last.

ton o oo
3dly. Neglecting the terms into which ¢, ¢, ¢, &c. ¢, ¢, ¢, &c. enter, consider those,
‘ AN AN
of the remainder, which contain d, d, d, &c. and proceed as before.—And so on.
This rule has no difficulty, whatever may be the number of multinomials.

The words in italics, were inserted to make the rule include the finding of B from
1
B; they are of no use when # is greater than one.

Similar rules for multinomials of higher orders are formed with equal case ; being
the reverse of those that have been given for direct derivation.



